Schnellsuche:

Meyers Konversationslexikon

Autorenkollektiv, Verlag des Bibliographischen Instituts, Leipzig und Wien, Vierte Auflage, 1885-1892

Schlagworte auf dieser Seite: Atmung

15

Atmung (Lungenatmung).

und die Brust. Je nachdem die Thätigkeit des Zwerchfells oder der Brustmuskeln beim Atmen überwiegt, unterscheidet man das sogen. Bauchatmen oder das Brustatmen. Bei diesem wird mehr die Brust, bei jenem mehr der Bauch herausgewölbt und ausgedehnt. Das Bauchatmen herrscht beim Mann, das Brustatmen beim Weib vor. Bei tiefer Einatmung, namentlich bei der Atemnot und angstvoller Atembehinderung, nehmen freilich noch zahlreiche andre Muskelgruppen an der Erweiterung der Brusthöhle Anteil. Im Gegensatz zum Einatmen erfolgt das gewöhnliche ruhige Ausatmen in der Regel nur dadurch, daß die bei der Inspiration aus ihrer Gleichgewichtslage gebrachten Brustwandungen nach der Erschlaffung der Inspirationsmuskeln durch Schwere und Elastizität wieder in jene zurückkehren. Die Schwere bringt die gehobenen Rippen wieder herab, die Elastizität der Lungen zieht das Zwerchfell wieder in die Höhe; die Elastizität der Rippenknorpel bringt die Rippen wieder in ihre Gleichgewichtslage. Hierdurch wird der Brustraum und mit ihm auch der Raum der Lunge verkleinert und so ein Teil der in ihr enthaltenen Luft ausgetrieben. Die Erweiterung der Lungen bei der Einatmung, welche alle Hohlräume derselben, besonders aber die nachgiebigsten, die Lungenbläschen, betrifft, bewirkt bei ruhigem Atmen eine Zunahme des Luftgehalts, welche etwa ein Sechstel des Gesamtinhalts beträgt. Durch tiefere A. ist ein weit bedeutenderer Luftwechsel möglich. Die Luftmenge, welche nach einer möglichst tiefen Inspiration ausgeatmet werden kann, nennt man die vitale Kapazität der Lunge; sie beträgt nach Hutchinson für den Erwachsenen etwa 3770 ccm. Aber auch nach der tiefsten Ausatmung bleibt noch ziemlich viel Luft in der Lunge zurück, nämlich etwa 1200-1600, nach einer gewöhnlichen ruhigen Ausatmung sogar noch etwa 3000 ccm. Die Menge der durch einen gewöhnlichen ruhigen Atemzug ein- und ausgeatmeten Luft beträgt etwa nur 500 ccm. Es wechseln diese Größen bei verschiedenen Individuen und Körperzuständen, namentlich bei Ruhe und Bewegung des Körpers, sehr bedeutend. Zur Bestimmung der geatmeten Luftmengen dient ein von Hutchinson angegebener, nach dem Prinzip des einfachen Gasometers konstruierter Apparat, der als Spirometer bezeichnet wird.

Die Bewegung der Luft in den Respirationsorganen erzeugt eigentümliche Geräusche, Respirationsgeräusche. Legt man das Ohr an eine Stelle der Brustwand, unter welcher sich normales Lungengewebe befindet, so vernimmt man an verschiedenen Stellen der Brustwand Geräusche von wechselnder Beschaffenheit. Sie entstehen überall, wo die Luft aus einem weitern in ein engeres Rohr strömt oder umgekehrt, besonders also an der Übergangsstelle der Lungenbläschen in die feinsten Ästchen der Luftröhre und an der Eintrittsstelle des Kehlkopfs in die Rachenhöhle. Der bei der Inspiration durch den Kehlkopf streichende Luftstrom erzeugt ein Geräusch von scharfem, blasendem Charakter, das annähernd durch die Aussprache von ch wiedergegeben werden kann (bronchiales Respirationsgeräusch). Da es durch die starren Wandungen der Luftröhre und ihrer Verzweigungen fortgeleitet wird, so ist es auch an den Brustwandungen, besonders in der Rückengegend, hörbar und hier um so mehr, je weiter nach oben man das Ohr anlegt. Beim Übertritt der Luft aus den feinsten Luftröhrenstämmchen in die Lungenbläschen entsteht das vesikuläre Respirationsgeräusch. Dieses hat bei oberflächlicher A. einen unbestimmten Charakter, während es bei tiefer A. weich und schlürfend ist und der Aussprache eines w bei verengerter Mundöffnung gleicht. Das vesikuläre Atmen ist an den vordern und untern Lungenabschnitten am reinsten zu hören. Bei der Exspiration ist ein Vesikuläratmen in der Regel nicht hörbar, während ein im Kehlkopf entstehendes und durch die Luftröhrenwandung fortgeleitetes Bronchialgeräusch sehr deutlich zu vernehmen ist. Bei den verschiedenen Krankheiten der Respirationsorgane werden die Atmungsgeräusche in der mannigfachsten Weise abgeändert und gewähren dadurch ein wertvolles Hilfsmittel für die Erkennung und Unterscheidung der einzelnen Krankheiten.

Können auch die Respirationsbewegungen bis zu einem gewissen Grad willkürlich hervorgebracht werden, so geschehen sie doch gewöhnlich unwillkürlich und rhythmisch. Die durchschnittliche Frequenz der Atemzüge beträgt beim Erwachsenen 16-20 in der Minute. Um die Anregung zu diesen unwillkürlichen und rhythmischen Atembewegungen zu verstehen, ist es erforderlich, den Chemismus der Lungenatmung kennen zu lernen. Eingeatmet wird atmosphärische Luft, die bis auf geringe Schwankungen besteht aus:

^[Liste]

Sauerstoff 20,96 Volumprozent

Stickstoff 79,00 "

Kohlensäure 0,04 "

Dagegen enthält Exspirationsluft im Mittel:

^[Liste]

Sauerstoff 16,03 Volumprozent

Stickstoff 79,56 "

Kohlensäure 4,38 "

und ergibt sich, daß letztere etwa ein Fünftel Sauerstoff weniger enthält als die erstere, und daß ihr Kohlensäuregehalt denjenigen der eingeatmeten Luft um mehr als das Hundertfache übersteigt. Von dem sehr reichen Gehalt an Kohlensäure in der Exspirationsluft kann man sich leicht überzeugen durch den sehr bedeutenden Niederschlag von kohlensaurem Kalk oder Baryt, den diese Luft beim Durchleiten durch Kalk- oder Barytwasser erzeugt. Der Gehalt an Stickstoff ist in der eingeatmeten wie ausgeatmeten Luft der gleiche, denn dieses Gas dient bloß zur Verdünnung des Sauerstoffs. Die ausgeatmete Luft ist nahezu auf die Körpertemperatur erhöht. Ferner enthält dieselbe eine Menge Wasser, welches von den feuchten Wandungen der gesamten Atmungsfläche in der Lunge herrührt. Beim ruhigen Atmen ist die Atmungsluft nahezu vollständig mit Wasserdampf gesättigt. Der oben geschilderte Gasaustausch in den Lungen besteht nun ununterbrochen das ganze Leben hindurch; sistiert man ihn, so tritt schon nach kurzer Zeit Erstickungstod ein.

Was die Triebkräfte für den Lungengaswechsel betrifft, so lehrte Lavoisier, daß in den Lungen eine hauptsächlich aus Kohlenstoff und Wasserstoff bestehende Flüssigkeit ausgehaucht werde, welche beim Zusammentreffen mit dem eingeatmeten Sauerstoff in Kohlensäure und Wasser umgewandelt würde. Als Magnus zeigte, daß sowohl arterielles als venöses Blut erhebliche Mengen von auspumpbarem Sauerstoff und von auspumpbarer Kohlensäure enthielten, wurde die Lavoisiersche Hypothese völlig unhaltbar, und man glaubte jetzt den Gaswechsel mit Hilfe des Dalton-Bunsenschen Gesetzes erklären zu können. Indessen ist der Lungengaswechsel durch Anwendung der bloßen Gesetze über das Verhalten einfach absorbierter Gase nicht zu verstehen, und man muß daher annehmen, daß sowohl die Kohlensäureausscheidung als auch die Sauerstoffaufnahme auf Dissociations-^[folgende Seite]