Schnellsuche:
Info: Zur Zeit wird der Volltextindex aktualisiert. Sie erhalten daher bei Suchen nicht die volle Anzahl an Treffern. Die Aktualisierung dauert typischerweise wenige Minuten.

Meyers Konversationslexikon

Autorenkollektiv, Verlag des Bibliographischen Instituts, Leipzig und Wien, Vierte Auflage, 1885-1892

Schlagworte auf dieser Seite: Eisen

421

Eisen (Bessemer-Prozeß).

Verfahren wurde 1856 von Henry Bessemer erfunden, und seitdem ist in der ganzen Eisenindustrie eine vollständige Umwälzung eingetreten. Die ersten Versuche von Bessemer schlugen fehl, indem zwar Kohlenstoff und Silicium aus dem Roheisen entfernt wurden, aber Phosphor und Schwefel darin zurückblieben. Spätere in Schweden mit dem dortigen Holzkohlenroheisen angestellte Versuche ergaben gute Resultate; deshalb wurde das Bessemer-Verfahren in England auch wieder aufgenommen, und man erzielte nun hier ebenfalls Erfolge, besonders seitdem Mushet gezeigt hatte, daß die Nachteile einer zu weit gegangenen Oxydation durch einen Spiegeleisenzusatz wieder beseitigt werden konnten. In der neuern Zeit ist ein wesentlicher Fortschritt im Bessemer-Verfahren dadurch gemacht worden, daß man gelernt hat, auch aus stark phosphorhaltigem Roheisen (sogen. Thomaseisen) ein brauchbares schmiedbares E. zu erzeugen (Thomas-Gilchristsches Verfahren). Das Wesen des Bessemer-Verfahrens besteht darin, daß man durch das flüssig gemachte E. von unten stark gepreßte Gebläseluft (mit 80-140 cm Quecksilberpressung) in vielen feinen Strahlen leitet und die Entkohlung ohne Anwendung besondern Brennmaterials durchführt. Dieses ist dadurch möglich, daß bei der Einwirkung des Windes auf das flüssige Roheisen zunächst Silicium und Mangan, daneben auch E. und darauf der Kohlenstoff oxydiert werden, wobei namentlich durch das verbrennende Silicium eine so hohe Temperatur entsteht, daß das Metall während der verhältnismäßig kurzen Dauer des Prozesses (10-25 Minuten) flüssig bleibt. Siliciumarme Weißeisensorten, deren amorpher Kohlenstoff sehr rasch (weit rascher als der Graphit des Graueisens) verbrennen würde, eignen sich deshalb nicht für den Prozeß, weil durch die Verbrennung nicht die erforderliche Temperatur erzeugt wird. Da der Prozeß wegen der energischen Einwirkung des Windes bei der hohen Temperatur so rasch verläuft, hat ein größerer Schwefelgehalt nicht Zeit, sich hinreichend zu verschlacken. Ein Phosphorgehalt des Roheisens ist bei der gewöhnlich angewandten, viel Kieselsäure enthaltenden Ausfütterung der Bessemerbirne (saurer Prozeß) sehr schädlich, weil die Phosphorsäure aus dem entstehenden phosphorsauren Eisenoxydul durch die Kieselsäure der sauren Schlacke ausgeschieden und darauf reduziert wird und deswegen Phosphor wiederum ins E. geht. Der Phosphorgehalt des Roheisens darf aus diesem Grund beim sauren Prozeß höchstens 0,1 Proz. betragen. Wenn man bedenkt, daß mehr als 97 Proz. aller in Deutschland geförderten Eisenerze so phosphorhaltig sind, daß das daraus erzeugte Roheisen zum gewöhnlichen Bessemer-Prozeß nicht zu verwerten ist und man deshalb früher auf die Einfuhr ausländischer phosphorfreier Erze angewiesen war, so ergibt sich daraus, von welch hoher Bedeutung es ist, daß der Bessemer-Prozeß im J. 1879 von Thomas und Gilchrist so weit ausgebildet wurde, daß er nahezu allgemein anwendbar wurde und namentlich auch bei Verarbeitung phosphorhaltigen Roheisens gutes schmiedbares E. lieferte. Die Entphosphorung des Roheisens geschieht in der basisch ausgefütterten Bessemerbirne (basischer Prozeß).

α) Saurer (oder gewöhnlicher) Bessemer-Prozeß. Man verwendet am besten ein graues Roheisen (vgl. die Analysen von Bessemerroheisen) mit 3-4,5 Proz. Kohlenstoff, 2-4 Proz. Silicium, 0-4 Proz. Mangan und weniger als 0,1 Proz. Phosphor, 0,06 Proz. Schwefel und 0,3 Proz. Kupfer. Man kann den Entkohlungsprozeß nur so weit fortsetzen, daß gerade schmiedbares E. entsteht (schwedisches Verfahren); weit häufiger treibt man aber die Oxydation so weit, daß das Kohleneisen nicht bloß völlig entkohlt wird, sondern sogar noch Sauerstoff aufnimmt, fügt dann aber flüssiges Spiegeleisen hinzu, dessen Mangangehalt den das Produkt brüchig machenden Sauerstoff wegnimmt, und dessen Kohlenstoffgehalt das entkohlte E. wieder kohlt (englisches Verfahren). Letztere Methode ist die fast allein noch angewendete, weil sie sicherer ein Produkt mit bestimmtem Kohlenstoffgehalt gibt. Beim schwedischen Verfahren hat man vorübergehend einen feststehenden Ofen mit Düsen an der Peripherie angewendet (schwedischer Bessemer-Ofen), zur Zeit wird aber fast nur noch der englische Ofen mit beweglicher Birne (Konverter, Retorte) benutzt. Die Bessemerbirne A (Fig. 24 auf Tafel III) mit Hals B besteht aus dickem Eisenblech und ist innen mit feuerfestem, wenig thonhaltigem Sand (Ganister) oder mit schamottehaltigem Thon ausgestampft oder zuweilen auch mit feuerfesten Ziegeln ausgekleidet. Das Bodenstück C ist entweder an dem Hauptkörper A fest angenietet, oder kann davon abgenommen werden, um voll feuerfesten Materials gestampft zu werden, in welchem man konische Öffnungen zur Aufnahme von sieben Thonformen (Fern, Feren) läßt, deren jede wieder 7-13 cylindrische Kanäle (Düsen) von 9-12 mm Durchmesser zur Windzuführung hat. Mittels eines hydraulischen Kolbens k wird der auf Rollen laufende Windkasten D unter dem Boden der Birne angedrückt. Die Birne ist in Zapfen a und b aufgehängt, welche auf einem Gestell E ruhen. Die Gebläseluft strömt aus der Windleitungsröhre F durch die Röhre c in einen Raum zwischen dem Zapfen a und der auf dem Ständer E ruhenden Hülse d und begibt sich durch das Rohr e in den damit durch einen Bügel f verbundenen Windkasten D, aus welchem der Wind durch die Düsen in die Birne gelangt. Die Regulierung des Windes geschieht entweder von einem Arbeiter mittels eines Ventils an der Windleitungsröhre, oder der Windzutritt reguliert sich beim Kippen des Apparats von selbst mittels eines exzentrischen Ringes auf dem Zapfen a, welcher beim Drehen einen Hebelarm hebt und senkt und damit auch ein über der Röhrenmündung F in G befindliches, durch ein Gewicht niedergehaltenes Ventil. Die Bewegung der Birne A geschieht durch eine Kippvorrichtung mittels Zahnrades H, in welches eine von dem Kolben einer hydraulischen Presse bewegte Zahnstange g eingreift. Bei großen Birnen wendet man zu diesem Betrieb auch Dampfkraft, bei kleinen Bewegungen durch Handkurbeln an. Kleinere Birnen fassen bis 1000, größere bis 8000 kg; eine solche z. B. von 5-6000 kg Inhalt hat im mittlern Teil 1,5-2 m Durchmesser und 0,8-1 m Höhe, im Bodenteil resp. 0,7-1 und 0,6-0,8 m; Weite an der Mündung des 1,8 m hohen Halses 0,26-0,4 m, oberer konischer Teil 0,7 m hoch und am Hals 0,6 m weit.

Das Arbeitsverfahren in einem solchen Apparat ist folgendes: Man läßt das Roheisen entweder direkt aus einem Hochofen oder aus einem Kupolofen in einer Rinne durch den Hals der geneigten Birne A' einfließen und kippt diese dann auf bei gleichzeitiger automatischer Anlassung des Windes. Bei dem sauren Prozeß gibt man vor der Entkohlung keinen Zuschlag zum Roheisen. Der Hals B' (Fig. 25 auf Tafel III) befindet sich dann unter einem mit der Esse L' in Verbindung stehenden Schirm K'. Bei der Einwirkung der Gebläseluft oxydiert sich zunächst das Silicium neben Mangan und wenig E., während der Graphit in dem Maß, als das Silicium abge-^[folgende Seite]