Schnellsuche:
Info: Zur Zeit wird der Volltextindex aktualisiert. Sie erhalten daher bei Suchen nicht die volle Anzahl an Treffern. Die Aktualisierung dauert typischerweise wenige Minuten.

Meyers Konversationslexikon

Autorenkollektiv, Verlag des Bibliographischen Instituts, Leipzig und Wien, Vierte Auflage, 1885-1892

Schlagworte auf dieser Seite: Brechung des Lichts

375

Brechung des Lichts.

Indem man die zusammengehörigen Winkel mißt, findet man z. B. zu dem

^[Liste]

Einfallswinkel 0° den Brechungswinkel 0°

15° 11½°

30° 22°

45° 32°

60° 40½°

75° 46½°

90° 48½°

In Fig. 1 ist nach der Angabe dieser kleinen Tabelle zu dem Einfallswinkel i = 60° der zugehörige Brechungswinkel r = 40½° gezeichnet. Beschreiben wir nun in der Brechungsebene um den Einfallspunkt n einen Kreis mit beliebigem Halbmesser und ziehen von den Punkten a und b aus, in welchen der einfallende und der gebrochene Strahl die Kreislinie schneiden, die Geraden ad und bf senkrecht auf das Einfallslot, so ergibt sich, daß bf ¾ ist von ad oder ad 4/3 von bf. Verfahren wir ebenso für alle in der obigen Tabelle aufgeführten Winkelpaare, so finden wir stets, daß die zum Einfallswinkel gehörige Senkrechte 4/3mal so groß ist als die zum Brechungswinkel gehörige. Die Zahl 4/3 oder 1 1/3, welche als Maß gelten kann für die Stärke der B. beim Übergang des Lichts aus Luft in Wasser, heißt das Brechungsverhältnis oder der Brechungsindex (Brechungskoeffizient, Brechungsexponent) des Wassers. Aus Luft in Glas werden die Lichtstrahlen stärker gebrochen, und zwar ist hier das Verhältnis jener beiden zum Einfallslot senkrechten Geraden ausgedrückt durch die Zahl 3/2 oder 1,5. In dieser Weise besitzt jeder durchsichtige Körper ein ihm eigentümliches Brechungsverhältnis; für einige derselben sind die Brechungsverhältnisse in der folgenden kleinen Tabelle zusammengestellt:

^[Liste]

Wasser 1,333

Crownglas 1,530

Alkohol 1,365

Flintglas v. Fraunhofer 1,635

Kanadabalsam 1,530

Flintglas von Merz 1,732

Schwefelkohlenstoff 1,631

Diamant 2,487

Diese Werte gelten für Strahlen mittlerer Brechbarkeit; über die Brechungsverhältnisse verschiedenfarbiger Strahlen s. Farbenzerstreuung. Über das Verfahren zur genauen Bestimmung der Brechungsverhältnisse s. Prisma.

In der Geometrie nennt man die Senkrechten ad oder bf (Fig. 1), falls der Halbmesser des Kreises = 1 genommen worden ist, die "Sinus" der zugehörigen Winkel i und r. Wir können daher das Brechungsgesetz in folgender Weise aussprechen: Der Sinus des Einfallswinkels steht zum Sinus des Brechungswinkels in einem unveränderlichen Verhältnis oder, wenn man den Brechungsindex mit n bezeichnet, sin i : sin r = n.

Bei dem Übertritt des Lichts aus der Luft in einen flüssigen oder festen Körper wird der gebrochene Strahl dem Einfallslot genähert. Kommt aber ein Lichtstrahl in der Richtung sn aus dem Wasser, so erleidet er ganz dieselbe Ablenkung wie der in der Richtung ns ins Wasser eintretende Strahl; er schlägt beim Austritt aus dem Wasser die Richtung nl ein und wird sonach durch die B. vom Lot entfernt. Für die zusammengehörigen Winkel r und i gelten jetzt genau dieselben Werte wie vorhin, nur daß der Einfallswinkel im Wasser dem frühern Brechungswinkel, der jetzige Brechungswinkel dem frühern Einfallswinkel in der Luft gleich ist; das Brechungsverhältnis für den Übergang aus Wasser in Luft ist sonach ¾, während dasjenige aus Luft in Wasser 4/3 beträgt. Läßt man den aus dem Wasser (etwa von dem Punkt A, Fig. 2) kommenden Strahl immer schräger auf die Wasseroberfläche fallen, so nimmt auch der austretende Strahl eine immer schrägere Richtung an, indem er mit dem Einfallslot stets einen größern Winkel bildet als jener und sich der Wasseroberfläche mehr und mehr nähert. Endlich, wenn der Einfallswinkel im Wasser den Wert 48½° erreicht hat, streift der austretende Strahl an der Wasseroberfläche hin: sein Austrittswinkel beträgt jetzt 90°. Einen größern Austrittswinkel kann es aber nicht geben; mit ihm ist die Grenze der Möglichkeit des Austrittes erreicht. Wenn daher der Strahl noch etwas schräger von innen auf die Wasseroberfläche trifft, so tritt kein Licht mehr in die Luft hinaus; die Wasserfläche erweist sich für so schief auffallende Strahlen als völlig undurchdringlich. Während sich bei den weniger schrägen Strahlen das Licht zwischen einem austretenden und einem in das Wasser zurückgeworfenen Strahl teilte, so kommt dasselbe jetzt, da der erstere nicht mehr zu stande kommt, ohne allen Verlust dem letztern zu gute; es wird bei jenem Einfallswinkel sowie bei jedem größern vollständig zurückgeworfen oder total reflektiert. Der Einfallswinkel, bei welchem der Austritt aufhört und die "totale Reflexion" (Totalreflexion) beginnt, also derjenige, zu welchem ein Austrittswinkel von 90° gehört, heißt der Grenzwinkel; er beträgt für Wasser 48½°, für Glas 40¾°, für Diamant 23¾°. Der Grenzwinkel g wird gefunden aus der Gleichung: sin g = 1/n. Umgekehrt kann, wenn der Grenzwinkel gemessen ist, daraus der Brechungsindex gefunden werden (Totalreflektometer).

Eine Glasfläche, an welcher das Licht vollständig zurückgeworfen wird, erscheint in erhöhtem, metallähnlichem Glanz; sie bildet den klarsten und vollkommensten Spiegel, den man herstellen kann. Man verwendet daher bei optischen Instrumenten häufig ein total reflektierendes Prisma (Reflexionsprisma, Fig. 3), um die Strahlen ohne merklichen Verlust an Lichtstärke in eine andre Richtung zu lenken. Dasselbe besteht aus einem Glasstück, an welches zwei zu einander rechtwinkelige Flächen AC und BC und eine dritte Fläche AB angeschliffen sind, welche zu jenen unter Winkeln von 45° geneigt ist.

^[Abb.: Fig. 2. Totale Reflexion.]

^[Abb.: Fig. 3. Total reflektierendes Prisma.]