Schnellsuche:
Info: Zur Zeit wird der Volltextindex aktualisiert. Sie erhalten daher bei Suchen nicht die volle Anzahl an Treffern. Die Aktualisierung dauert typischerweise wenige Minuten.

Brockhaus Konversationslexikon

Autorenkollektiv, F. A. Brockhaus in Leipzig, Berlin und Wien, 14. Auflage, 1894-1896

774

Krystalle

Mit Rücksicht auf den durch die verhältnismäßige Länge gegebenen Wert, auf die Anzahl und die gegenseitige Lage der Achsen, lassen sich die K. in sechs verschiedene Abteilungen oder Systeme (Krystallsysteme) bringen: 1) Die Formen des ersten werden auf drei gleichwertige Achsen bezogen, die sich unter rechten Winkeln durchkreuzen; daher enthält dies sog. reguläre oder tesserale System, welches das höchste Maß von Symmetrie besitzt, lauter geschlossene Gestalten von ganz bestimmter Flächenzahl und ringsum gleichen Dimensionen; es gehören hierher: der Achtflächner oder das Oktaeder (s. Tafel: Krystalle I, Fig. 1), der Würfel oder das Hexaeder (Fig. 2), das Rhombendodekaeder (Fig. 3), der Pyramidenwürfel oder das Tetrakishexaeder (Fig. 4), das Pyramidenoktaeder oder das Triakisoktaeder (Fig. 5), das Ikositetraeder (Fig. 6) und der Achtundvierzigflächner oder das Hexakisoktaeder (Fig. 7), von dem die ersterwähnten sechs Gestalten gewissermaßen nur Specialfälle darstellen. An dem Würfel stumpft z. B. die Kombination mit dem Oktaeder die Ecken ab (Fig. 8), wie auch der Würfel seinerseits am Oktaeder die Ecken abstumpft (Fig. 9); die Kombination des Würfels mit dem Rhombendodekaeder stumpft die Würfelkanten ab (Fig. 10). Weitere Kombinationen regulärer Formen zeigen die Fig. 11-16. Alle andern Systeme haben wenigstens eine Achse von ungleicher Länge oder von abweichendem Werte. - 2) Beim tetragonalen System schneiden sich zwei gleichwertige Achsen (die Nebenachsen) in einer Ebene unter rechtem Winkel, während eine dritte längere oder kürzere (die Hauptachse) rechtwinklig darauf steht. Alle Gestalten desselben (Taf. I, Fig. 23-29) können aus der von acht gleichen gleichschenkligen Dreiecken begrenzten tetragonalen Protopyramide abgeleitet werden. - 3) Das hexagonale System besitzt drei gleiche unter 60° einander schneidende Achsen (Nebenachsen), auf deren Ebene eine vierte abweichend lange (Hauptachse) senkrecht steht; auch hier werden alle Formen mit ihren Kombinationen auf die hexagonale Protopyramide (s. Tafel: Krystalle II, Fig. 1) bezogen, z. B. die dihexagonale Pyramide (Fig. 2), das hexagonale Prisma (Fig. 3), dessen sechs vertikale Flächen man durch gerade Abstumpfung der horizontalen Randkanten jener Pyramide erhält. Fig. 4 zeigt das hexagonale Pinakoid, Fig. 5 u. 6 Kombination von Prisma und Pyramide, Fig. 7 ein stumpfes, Fig. 8 ein spitzes Rhomboeder und Fig. 9 ein Skalenoeder.

Die drei übrigen Systeme haben Achsen von dreifach verschiedenem Wert. 4) Beim rhombischen System kreuzen sich die Achsen noch rechtwinklig; die Grundpyramide desselben (Fig. 10 u. 11) ist von acht gleichen ungleichseitigen Dreiecken begrenzt; außerdem weist dieses System daraus abgeleitete andere Pyramiden, die drei Pinakoide (Fig. 12, in Kombination je nachdem mit Brachy- und Makrodoma und Prisma), vertikale Prismen, horizontal gelegene Längs- und Querdomen auf (Fig. 13-19). - 5) Im monoklinen oder klinorhombischen System handelt es sich um zwei verschieden lange Achsen, die sich schiefwinklig kreuzen, wobei eine dritte rechtwinklig auf beiden steht; die monokline Pyramide (Fig. 20) ist daher eigentlich keine einfache Form mehr, sondern bereits eine Kombination, und alle Gestalten dieses Systems (z. B. Fig. 21-25) sind vorn oben oder vorn unten nicht mehr übereinstimmend ausgebildet. - 6) Das trikline oder asymmetrische System zeigt eine schiefwinklige Durchkreuzung dreier ungleich langer Achsen (Fig. 26-28), und hier ist außerdem auch die Übereinstimmung zwischen rechts und links auf der vordern Seite verloren gegangen.

Man kann den Begriff eines Krystallsystems auch so definieren, daß man dasselbe als die Gesamtheit aller Krystallformen bezeichnet, die bei vorhandener Vollflächigkeit denselben Grad der Symmetrie besitzen, der sich in dem Vorhandensein oder Fehlen von Hauptsymmetrieebenen und gewöhnlichen Symmetrieebenen ausspricht. Von diesem Gesichtspunkte aus besitzt das reguläre System drei Hauptsymmetrieebenen (die Richtungen der Würfelflächen) und sechs gewöhnliche Symmetrieebenen (diejenigen der Rhombendodekaederflächen), das tetragonale eine Hauptsymmetrieebene (die horizontale Endfläche) und vier gewöhnliche Symmetrieebenen, das hexagonale eine Hauptsymmetrieebene und sechs gewöhnliche, das rhombische bloß noch drei gewöhnliche (die Richtungen der drei Pinakoide), das monokline nur noch eine gewöhnliche Symmetrieebene, das trikline überhaupt keine Symmetrieebene mehr. Da man unter Hauptachse die Normale auf eine Hauptsymmetrieebene versteht, so haben die Krystalle des regulären Systems drei Hauptachsen, die des tetragonalen und hexagonalen je eine, die der übrigen Systeme keine mehr. Durch Erhöhung oder Verminderung der Temperatur wird die Zugehörigkeit eines Krystalls zu einer dieser sechs Symmetrieabteilungen oder Krystallsysteme nicht verändert, sofern sein Molekulargefüge bei diesen Temperaturänderungen dasselbe bleibt. - Es giebt nun Formen, namentlich im Bereich des regulären und hexagonalen Systems, die bei gleicher Lage der Flächen deren nur halb so viel zählen als andere Formen, weshalb man von diesen auf jene gelangt, wenn man die symmetrisch verteilte Hälfte ihrer Flächen sich verschwunden, die andere ausgedehnt denkt; dies begründet den Unterschied zwischen den holoedrischen (vollflächigen) und hemiëdrischen (hälftflächigen) Formen (s. Hemiëdrie). So zeigt Taf. I, Fig. 17 wie aus dem Oktaeder dessen Hälftflächner, das Tetraeder, durch Ausdehnung der abwechselnden Flächen hervorgeht; Fig. 18 ist der Halbflächner von Fig. 6, Fig. 19 derjenige von Fig. 5, Fig. 20 derjenige von Fig. 7 (nach der geneigtflächigen Hemiëdrie), Fig. 21 der von Fig. 4, Fig. 22 der von Fig. 7 (nach der parallelflächigen Hemiëdrie), Taf. II, Fig. 7 der von Fig. 1, Fig. 9 der von Fig. 2 derselben Tafel. Denkt man sich nur das symmetrisch verteilte Viertel der Flächen eines holoedrischen Krystalls in gesetzmäßiger Weise entwickelt und ausgedehnt, so entstehen die tetartoedrischen oder viertelflächigen Formen (s. Tetartoedrie).

Zwei gleichgestaltete, nur zum Teil ausgebildete K. wachsen oft in nicht paralleler Stellung nach sehr bestimmten Gesetzen zu Zwillingskrystallen zusammen, die für manche Mineralien besonders charakteristisch sind. So zeigt Taf. II, Fig. 29 einen Zwilling des Oktaeders, Fig. 30 den Zwilling einer tetragonalen Kombination (Deuteroprisma, Pyramide, Prisma), Fig. 31 einen Zwilling des hexagonalen Prismas, Fig. 32 den kreuzförmigen Zwilling einer rhombischen (Prisma, Brachypinakoid, basisches Pinakoid), Fig. 33 den einer monoklinen (Klinopinakoid, Prisma, Hemipyramide) Kombination. Bei den Zwillingskrystallen sind je nach der Stellung der Individuen zueinander solche mit

^[Artikel, die man unter K vermißt, sind unter C aufzusuchen.]